

 2017-07-18 12:57 Page 1

 # $Id: README,v 1.3 2017/06/19 20:00:10 pm Exp $

 Basic Seismic Utlilities (BSU)
 Author: Dr. P. Michaels, PE <pm@cgiss.boisestate.edu>
 Center for Geophysical Investigation of the Shallow Subsurface
 Boise State University
 Boise, Idaho 83725
 VERSION: 3.0.0
 FORMATS: DEBIAN and UBUNTU (*.deb), REDHAT and CENTOS (*.rpm)
 and TARBALL (autoconf, automake, libtool)
 WHICH FORMAT TO USE:
 A). If you plan on modifying or extending the software:
 Use the source TAR archive, install under /usr/local.
 B). If you just want the binaries, use a package and
 install under /usr (Debian policy, also good for RPM)

 ABSTRACT:
 This package is a collection of seismic signal processing and seismic
 modeling software. It is designed for problems in Engineering Geophysics.
 The binary data format is derived from SEG-Y (no reel header, 240 byte
 trace header, data). It is very compatible with Seismic Unix, but
 there are some differences in the headers (3-component recording,
 polarized sources, etc.).

 CONTENTS:

 1. QUICK START
 1.0 Dependencies
 1.1 Binary Install
 1.1.0 From TAR archive
 1.1.1 From a package (apt, rpm)
 1.2 Source Compile and Install from TAR archive.

 2. DEPENDENCIES
 2.0 BLAS and LAPACK (Linear Algebra Library)
 2.1 GSL (GNU Scientific Library)
 2.2 PLPLOT (GNU Plotting Library)
 2.3 GNUPLOT as an alternative to PLPLOT and required by some codes.

 3. LINUX SYSTEMS (Source Package Compile)
 3.0 Compiling a source package with Debian Apt Package manager (*.deb)
 3.1 Compiling a source package with RedHat Package manager (*.rpm)

 4. COPYRIGHT

 1. QUICK START

 1.0 Install any BSU dependencies. These would be libraries that BSU uses
 (see section 2
 below). On Unix/Linux systems, this includes BLAS, LAPACK, GSL, PLPLOT,
 GNUPLOT (and
 packages that these may depend on.

 1.1 BINARY ONLY INSTALL

 2017-07-18 12:57 Page 2

 1.1.0 Mingw32 MS Windows
 Precompiled binaries
 Unzip: BSU_EXEC.zip in a location suitable for executable
 programs.
 example: C:\Programs
 unzip BSU_EXEC.zip
 NOTES: 1). This will install binaries under C:\Programs
 2). Optional: install GNUPLOT from
 http://www.gnuplot.info/index.html
 3). Optional: MingW32 to add unix commands to Powershell
 http://www.mingw.org/
 4). Optional: Octave
 https://wiki.octave.org/Octave_for_Microsoft_Windows

 1.1.1 From a PACKAGE (* replaced with your specific downloaded
 package):
 Debian: sudo dpkg -i bsu-3.0.0*.deb
 RPM: sudo rpm -ihv bsu-3.0.0*.rpm
 NOTES: 1). RPM is relocateable, can use prefix option to change
 install
 directory tree. Example: sudo rpm -ihv --prefix /usr/local
 bsu-3.0.0*.rpm
 2). DEB package is policy compliant, installs under
 /usr tree.
 3). Default for RPM is install under /usr tree.

 1.2 SOURCE, COMPILE and INSTALL
 1.2.0 From a TARBALL (Debian, Mint, Ubuntu, Arch, Slackware, Redhat)
 cd /usr/local/src
 tar xvzf bsu-3.0.0.tar.gz
 cd bsu-3.0.0
 ./configure <options>
 make install
 NOTES: 1). To view options, ./configure -h | less
 Make your choice (see bsu-user-guide3.pdf),
 Then "make" and "make install".
 2). To remove, "make uninstall". To recompile, "make
 clean" followed
 by "./configure <options>", followd by "make" and
 "make install".

 WHAT IF I CAN’T WRITE IN /usr/local?
 If you don’t have write privileges in /usr/local, you
 can build it in your home directory. In that case you will want to use
 the "prefix"
 options when you run ./configure from inside the bsu-3.0.0 directory.
 Example: (here, "mydirectory" would be your home directory name)
 mkdir -p /home/mydirectory/local/bin
 mkdir -p /home/mydirectory/local/share
 mkdir -p /home/mydirectory/local/lib
 mkdir -p /home/mydirectory/local/include
 cd bsu-3.0.0
 ./configure --prefix=/home/mydirectory/local <other options>
 make
 make install

 2017-07-18 12:57 Page 3

 2. DEPENDENCIES
 These are software libraries that BSU takes advantage of. Not every
 BSU program
 needs these, but a complete installation requires these packages.

 1.0 BLAS and LAPACK
 http://www.netlib.org/blas/
 http://www.netlib.org/lapack/
 Debian, Redhat, and most other modern Linux distributions have these
 packages
 available. You will not usually need to compile these. In most cases,
 you just
 need to install LAPACK, since the package system will automatically add
 BLAS (which
 is required by LAPACK). For example,
 DEBIAN & UBUNTU:
 sudo apt-search lapack
 will give you a list of lapack packages. One can also run aptitude or
 synaptic to
 find these packages. With synaptic (GUI), use the "search" button.
 REDHAT & CENTOS:
 You can use the yum tool, or perhaps yumex (GUI tool which is like
 synaptic in debian).

 Look for the "lapack3" version, and if available, any development packages
 if you plan
 on compiling BSU from source (these often end with names *-dev or
 *-devel).

 CAUTION: Fortran is moving from the g77 to the gfortran compiler.
 Make sure that if
 you plan on using a compiled LAPACK library, it has been compiled with
 the fortran
 compiler you plan on using for BSU. Package names that end with *-gf
 in Debian or
 Ubuntu systems have been compiled with gfortran. Debian 5.0 (Lenny)
 only comes with
 gfortran. Debian 4.0 (Etch) with both g77 and gfortran, and will tend
 to use g77.

 EXAMPLES:
 On a Debian 9 "stretch" System, packages installed were:
 liblapack-dev
 liblapack3
 libblas-common
 libblas-dev
 libblas3
 libopenblas-base
 libgsl-dev
 libgsl2:amd64
 libshp-dev:amd64
 libshp2:amd64
 libplplot-c++11:amd64

 2017-07-18 12:57 Page 4

 libplplot-dev:amd64
 libplplot-fortran10:amd64
 libplplot-lua:amd64
 libplplot-ocaml
 libplplot12:amd64
 plplot-doc
 plplot-tcl:amd64
 plplot-tcl-bin
 plplot-tcl-dev:amd64
 plplot12-driver-qt:amd64
 plplot12-driver-wxwidgets:amd64
 plplot12-driver-xwin:amd64
 python-plplot
 python-plplot-qt
 liboctave-dev
 liboctave3v5:amd64
 octave
 octave-common
 octave-control
 octave-info
 octave-nan
 octave-signal
 octave-tsa

 NOTE: Not all these plplot packages are needed for BSU, but this is what
 I had on my system. The *doc and *test packages are not required, but may
 be useful.
 --
 For Cross-Compile on Debian 9 Host: Target Microsoft Windows 8.1 64 bit
 Packages:
 binutils-mingw-w64
 binutils-mingw-w64-i686
 binutils-mingw-w64-x86-64
 g++-mingw-w64
 g++-mingw-w64-i686
 g++-mingw-w64-x86-64
 gcc-mingw-w64
 gcc-mingw-w64-base
 gcc-mingw-w64-i686
 gcc-mingw-w64-x86-64
 gdb-mingw-w64
 gdb-mingw-w64-target
 gfortran-mingw-w64
 gfortran-mingw-w64-i686
 gfortran-mingw-w64-x86-64
 gnat-mingw-w64
 gnat-mingw-w64-base
 gnat-mingw-w64-i686
 gnat-mingw-w64-x86-64
 mingw-w64-common
 mingw-w64-i686-dev
 mingw-w64-tools
 mingw-w64-x86-64-dev

 FOR RPM BASED SYSTEMS

 2017-07-18 12:57 Page 5

 The general rule is that a packagename-dev development package will have
 a name
 like packagename-devel in RPM based systems (difference is -devel instead
 of -dev).
 Some Examples:

 plplot-5.9.7-3.el6.1.x86_64
 octave-3.4.3-2.el6.x86_64
 gsl-1.13-1.el6.x86_64
 gsl-devel-1.13-1.el6.x86_64
 lapack-3.2.1-5.el6.x86_64
 lapack-devel-3.2.1-5.el6.x86_64
 blas-3.2.1-5.el6.x86_64
 blas-devel-3.2.1-5.el6.x86_64
 gnuplot-4.2.6-2.el6.x86_64

 BUILDING SOURCE PACKAGES
 3. LINUX SYSTEMS (Source Package Compile)
 These are instructions on rebuilding from a source package. One can
 download either
 a *.deb or *.rpm source package and build it with these instructions.
 For MS-Windows,
 I built BSU with the MingW32 tool chain (see above package list) on a
 Linux host.

 3.0 From a DEBIAN PACKAGE
 Before building a source package, you should have these packages
 on your system:
 debian-policy
 debhelper
 dh-make
 devscripts
 lintian

 Debian: There are 3 or more files in a typical Debian package
 (in directory where you have bsu-3.0.0*.dsc, *.tar and any
 *.diff files)
 Run the command which extracts a source directory tree:

 dpkg-source -x bsu-3.0.0.dsc

 Then cd into bsu-3.0.0 created by above command. Then cd
 into debian
 directory, edit changelog file if needed. You may also
 wish to edit the
 control, rules, and bsu.manpages files. Then exit the
 debian directory
 (return to next level above).

 Run the command:

 dpkg-buildpackage -rfakeroot -uc -us

 This will build a new bsu*.deb package in your directory
 one level above.

 2017-07-18 12:57 Page 6

 Install that with the command (the * represents your
 version number)

 sudo dpkg -i bsu*.deb
 OR
 sudo gdebi bsu*.deb

 3.1 From a RPM PACKAGE
 RedHat packages are a single file, typically ending in *.src.rpm
 and can be built
 either in /usr/src/redhat directory, or in your own home
 directory. For example,
 to build a package in my home directory, I have a .rpmmacros
 file in ${HOME}. Files
 which begin with a dot "." are hidden unless you use the -a
 option on an ls command.

 EXAMPLE .rpmmacros file
 pm:˜$ cat .rpmmacros

 %packager P. Michaels <pm@cgiss.boisestate.edu>
 %vendor BSU
 %_topdir /home/pm/redhat
 %_prefix /usr
 %_exec_prefix %{_prefix}
 %_mandir %{_prefix}/share/man
 %_datadir %{_prefix}/share
 %_sysconfdir %{_prefix}/etc
 %_bindir %{_exec_prefix}/bin

 In the above example, the source package will be installed in
 /home/pm/redhat (handy
 if you don’t have write privileges in /usr/src/redhat).
 The result of compilation will
 be a binary package to be installed under /usr (set by the
 %_prefix). A typical
 directory tree looks like this:

 EXAMPLE Say we want to build the GSL source package on a Ubuntu AMD64
 machine. The directory
 structure would look like this:
 pm:˜/redhat$ tree
 .
 |-- BUILD
 |-- RPMS
 | |-- i386
 | |-- noarch
 | ‘-- x86_64
 |-- SOURCES
 | |-- gsl-1.1-nousr.patch
 | |-- gsl-1.10-head.patch
 | |-- gsl-1.10-lib64.patch
 | |-- gsl-1.10.tar.gz
 ‘-- SPECS
 ‘-- gsl.spec

 2017-07-18 12:57 Page 7

 This directory tree was created with the command

 rpm -ihv gsl*src.rpm

 because my .rpmmacros file specified the location under my
 home directory.
 This step is comparable to the "dpkg-source -x" command in Debian.

 The next step is to cd ˜/redhat/SPECS directory, and then issue
 a build command:

 rpmbuild -bb gsl.spec

 (for example would build only a binary package, -bb option).
 RPM building is
 a big topic, see "Maximum RPM" by Edward C. Bailey for more
 details.
 www.redhat.com/docs/books/max-rpm/index.html

 4. COPYRIGHT Information, GPL License
 COPYRIGHT:
 Copyright (c) 2011 Paul Michaels
 <pm@cgiss.boisestate.edu>
 This program is free software; you can
 redistribute it and/or modify it under the terms
 of the GNU General Public License as published
 by the Free Software Foundation; either version
 2 of the License, or (at your option) any later
 version. This program is distributed in the
 hope that it will be useful, but
 WITHOUT ANY WARRANTY; without even the implied
 warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public
 License for more details.
 You should have received a copy of the GNU
 General Public License along with this program;
 if not, write to the Free Software Foundation,
 Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

